Number Systems Converter
Convert numbers between different bases: binary, decimal, octal, and hexadecimal.
Why & What
Number systems are different ways of representing numerical values. While we commonly use the decimal system (base-10) in everyday life, computers use binary (base-2), and programmers often work with hexadecimal (base-16) for convenience.
Binary (Base-2): Uses only 0 and 1. Foundation of all digital computing. Octal (Base-8): Uses 0-7. Historically used in computing. Decimal (Base-10): Uses 0-9. Our everyday system. Hexadecimal (Base-16): Uses 0-9 and A-F. Compact representation for binary data.
Number Base Concepts
Digits: 0, 1
Example: 1010₂ = 10₁₀
Digits: 0-7
Example: 12₈ = 10₁₀
Digits: 0-9
Example: 10₁₀ = 10
Digits: 0-9, A-F
Example: A₁₆ = 10₁₀
Base Converter
Quick Reference Table
| Decimal | Binary | Octal | Hex |
|---|---|---|---|
| 0 | 0000 | 0 | 0 |
| 1 | 0001 | 1 | 1 |
| 8 | 1000 | 10 | 8 |
| 10 | 1010 | 12 | A |
| 15 | 1111 | 17 | F |
| 16 | 10000 | 20 | 10 |
| 255 | 11111111 | 377 | FF |
Example: Converting 1010 Binary to Decimal
Binary: 1010
Position values (right to left): 2³, 2², 2¹, 2⁰ = 8, 4, 2, 1
Calculation: (1×8) + (0×4) + (1×2) + (0×1) = 8 + 0 + 2 + 0 = 10
Limitations & Disclaimer
- This converter handles positive integers only.
- Very large numbers may lose precision due to JavaScript limitations.
- Maximum safe integer: 9,007,199,254,740,991 (2⁵³ - 1).
- For educational purposes only.